-
當(dāng)前位置:首頁 > 創(chuàng)意學(xué)院 > 技術(shù) > 專題列表 > 正文
數(shù)據(jù)集怎么用(opencv數(shù)據(jù)集怎么用)
大家好!今天讓創(chuàng)意嶺的小編來大家介紹下關(guān)于數(shù)據(jù)集怎么用的問題,以下是小編對此問題的歸納整理,讓我們一起來看看吧。
開始之前先推薦一個非常厲害的Ai人工智能工具,一鍵生成原創(chuàng)文章、方案、文案、工作計劃、工作報告、論文、代碼、作文、做題和對話答疑等等
只需要輸入關(guān)鍵詞,就能返回你想要的內(nèi)容,越精準,寫出的就越詳細,有微信小程序端、在線網(wǎng)頁版、PC客戶端
官網(wǎng):https://ai.de1919.com。
創(chuàng)意嶺作為行業(yè)內(nèi)優(yōu)秀的企業(yè),服務(wù)客戶遍布全球各地,如需了解SEO相關(guān)業(yè)務(wù)請撥打電話175-8598-2043,或添加微信:1454722008
本文目錄:
一、在sas中我想要使用數(shù)據(jù)集的某一行數(shù)字或者某一列數(shù)字怎么弄?
使用某一列很好辦。 某一列其實就是一個變量,如果你只想保留這個一個變量的話:
Data new;
set old(keep=a);
run;
至于如何使用某一行么,當(dāng)時我也遇到過這個問題,我用了比較笨的辦法,希望能夠幫助到你。其實就是想辦法將數(shù)據(jù)進行轉(zhuǎn)置。這樣使用某一行就變成了上述查詢某一列的問題了。
proc transpose data=old out=new;
run;
當(dāng)然直接保留某一行也是可以的
比如你只想選取第n個觀察值;
Data new;
set old;
if _N_=n;
run;
PS:上述代碼中 new 為輸出的數(shù)據(jù)集,old 為原始數(shù)據(jù)集, a 為你所需要的某一列的變量名稱
二、linnerud(體能訓(xùn)練)數(shù)據(jù)集怎么引用
以load_iris為例。
# 導(dǎo)入是必須的
from sklearn.datasets import load_iris
iris = load_iris()
iris # iris的所有信息,包括數(shù)據(jù)集、標(biāo)簽集、各字段名等
這個輸出太長太亂,而且后邊也有,我就不復(fù)制過來了
iris.keys() # 數(shù)據(jù)集關(guān)鍵字
dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])
descr = iris['DESCR']
data = iris['data']
feature_names = iris['feature_names']
target = iris['target']
target_names = iris['target_names']
descr
'Iris Plants Database\n====================\n\nNotes\n-----\nData Set Characteristics:\n :Number of Instances: 150 (50 in each of three classes)\n :Number of Attributes: 4 numeric, predictive attributes and the class\n :Attribute Information:\n - sepal length in cm\n - sepal width in cm\n - petal length in cm\n - petal width in cm\n - class:\n - Iris-Setosa\n - Iris-Versicolour\n - Iris-Virginica\n :Summary Statistics:\n\n ============== ==== ==== ======= ===== ====================\n Min Max Mean SD Class Correlation\n ============== ==== ==== ======= ===== ====================\n sepal length: 4.3 7.9 5.84 0.83 0.7826\n sepal width: 2.0 4.4 3.05 0.43 -0.4194\n petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)\n petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)\n ============== ==== ==== ======= ===== ====================\n\n :Missing Attribute Values: None\n :Class Distribution: 33.3% for each of 3 classes.\n :Creator: R.A. Fisher\n :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n :Date: July, 1988\n\nThis is a copy of UCI ML iris datasets.\nhttp://archive.ics.uci.edu/ml/datasets/Iris\n\nThe famous Iris database, first used by Sir R.A Fisher\n\nThis is perhaps the best known database to be found in the\npattern recognition literature. Fisher's paper is a classic in the field and\nis referenced frequently to this day. (See Duda & Hart, for example.) The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant. One class is linearly separable from the other 2; the\nlatter are NOT linearly separable from each other.\n\nReferences\n----------\n - Fisher,R.A. "The use of multiple measurements in taxonomic problems"\n Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n Mathematical Statistics" (John Wiley, NY, 1950).\n - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.\n (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.\n - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n Structure and Classification Rule for Recognition in Partially Exposed\n Environments". IEEE Transactions on Pattern Analysis and Machine\n Intelligence, Vol. PAMI-2, No. 1, 67-71.\n - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions\n on Information Theory, May 1972, 431-433.\n - See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II\n conceptual clustering system finds 3 classes in the data.\n - Many, many more ...\n'
三、finereport 里面數(shù)據(jù)集如何使用另外一個數(shù)據(jù)集的select出來的字段做查詢條件
這個的話可以綁定數(shù)據(jù)列,將數(shù)據(jù)列拖拽至單元格,并設(shè)置單元格的屬性
按照上圖方法,將下表中對應(yīng)數(shù)據(jù)列拖入到單元格中(擴展設(shè)置在右下面板的【擴展方向】,數(shù)據(jù)設(shè)置在右上面板【數(shù)據(jù)設(shè)置】):
C3 ds1 產(chǎn)品 從左到右擴展,居中,其余默認
A4 ds1 地區(qū) 從上到下擴展,居中,其余默認
B4 ds1 銷售員 從上到下擴展,居中,其余默認
C4 ds1 銷量 不擴展,數(shù)據(jù)設(shè)置:匯總|求和,居中,其余默認
D4 ds2 銷售總額 不擴展,數(shù)據(jù)設(shè)置:匯總|求和,居中,其余默認
C5 — — =sum(C4)
D5 — — =sum(D4)
由于有兩個不同的數(shù)據(jù)集,要將不同數(shù)據(jù)集的數(shù)據(jù)建立聯(lián)系,需要用到數(shù)據(jù)過濾。選擇D4單元格,點擊設(shè)計器右側(cè)上方的單元格屬性面板中的過濾按鈕,如下圖:
打開過濾設(shè)置面板,添加如下過濾條件, 使得ds2中的“銷售員”數(shù)據(jù)列等于ds1中銷售員的值。
四、【2020-05-31】如何查看并使用R的內(nèi)置數(shù)據(jù)集
1、查看
R的內(nèi)置數(shù)據(jù)集一共有兩種:R內(nèi)部 datasets 包中的數(shù)據(jù)集以及安裝的其他 package 中包含的數(shù)據(jù)集,這些數(shù)據(jù)集的查看方法如下:
2、使用
以上就是關(guān)于數(shù)據(jù)集怎么用相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進行咨詢,客服也會為您講解更多精彩的知識和內(nèi)容。
推薦閱讀:
數(shù)據(jù)中心的三大架構(gòu)(數(shù)據(jù)中心的三大架構(gòu)是什么)
抖音數(shù)據(jù)恢復(fù)大師(抖音數(shù)據(jù)恢復(fù)精靈免費下載)
分析模態(tài)測試十大排名(分析模態(tài)測試十大排名題目)