HOME 首頁
SERVICE 服務(wù)產(chǎn)品
XINMEITI 新媒體代運營
CASE 服務(wù)案例
NEWS 熱點資訊
ABOUT 關(guān)于我們
CONTACT 聯(lián)系我們
創(chuàng)意嶺
讓品牌有溫度、有情感
專注品牌策劃15年

    人工智能的種類(人工智能的種類包括)

    發(fā)布時間:2023-03-12 22:49:22     稿源: 創(chuàng)意嶺    閱讀: 95        問大家

    大家好!今天讓創(chuàng)意嶺的小編來大家介紹下關(guān)于人工智能的種類的問題,以下是小編對此問題的歸納整理,讓我們一起來看看吧。

    ChatGPT國內(nèi)免費在線使用,能給你生成想要的原創(chuàng)文章、方案、文案、工作計劃、工作報告、論文、代碼、作文、做題和對話答疑等等

    你只需要給出你的關(guān)鍵詞,它就能返回你想要的內(nèi)容,越精準(zhǔn),寫出的就越詳細(xì),有微信小程序端、在線網(wǎng)頁版、PC客戶端,官網(wǎng):https://ai.de1919.com

    本文目錄:

    人工智能的種類(人工智能的種類包括)

    一、常見的人工智能機(jī)器人類型有哪些

    無人駕駛,智能家居,人工智能仿生眼,微軟人工智能Torque,智能客服,不過現(xiàn)在很多都是人工智能。

    二、人工智能專業(yè)主要課程有哪些?

    人工智能技術(shù)關(guān)系到人工智能產(chǎn)品是否可以順利應(yīng)用到我們的生活場景中。在人工智能領(lǐng)域,它普遍包含了機(jī)器學(xué)習(xí)、知識圖譜、自然語言處理、人機(jī)交互、計算機(jī)視覺、生物特征識別、AR/VR七個關(guān)鍵技術(shù)。

    一、機(jī)器學(xué)習(xí)

    機(jī)器學(xué)習(xí)(MachineLearning)是一門涉及統(tǒng)計學(xué)、系統(tǒng)辨識、逼近理論、神經(jīng)網(wǎng)絡(luò)、優(yōu)化理論、計算機(jī)科學(xué)、腦科學(xué)等諸多領(lǐng)域的交叉學(xué)科,研究計算機(jī)怎樣模擬或?qū)崿F(xiàn)人類的學(xué)習(xí)行為,以獲取新的知識或技能,重新組織已有的知識結(jié)構(gòu)使之不斷改善自身的性能,是人工智能技術(shù)的核心?;跀?shù)據(jù)的機(jī)器學(xué)習(xí)是現(xiàn)代智能技術(shù)中的重要方法之一,研究從觀測數(shù)據(jù)(樣本)出發(fā)尋找規(guī)律,利用這些規(guī)律對未來數(shù)據(jù)或無法觀測的數(shù)據(jù)進(jìn)行預(yù)測。根據(jù)學(xué)習(xí)模式、學(xué)習(xí)方法以及算法的不同,機(jī)器學(xué)習(xí)存在不同的分類方法。

    根據(jù)學(xué)習(xí)模式將機(jī)器學(xué)習(xí)分類為監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)等。

    根據(jù)學(xué)習(xí)方法可以將機(jī)器學(xué)習(xí)分為傳統(tǒng)機(jī)器學(xué)習(xí)和深度學(xué)習(xí)。

    二、知識圖譜

    知識圖譜本質(zhì)上是結(jié)構(gòu)化的語義知識庫,是一種由節(jié)點和邊組成的圖數(shù)據(jù)結(jié)構(gòu),以符號形式描述物理世界中的概念及其相互關(guān)系,其基本組成單位是“實體—關(guān)系—實體”三元組,以及實體及其相關(guān)“屬性—值”對。不同實體之間通過關(guān)系相互聯(lián)結(jié),構(gòu)成網(wǎng)狀的知識結(jié)構(gòu)。在知識圖譜中,每個節(jié)點表示現(xiàn)實世界的“實體”,每條邊為實體與實體之間的“關(guān)系”。通俗地講,知識圖譜就是把所有不同種類的信息連接在一起而得到的一個關(guān)系網(wǎng)絡(luò),提供了從“關(guān)系”的角度去分析問題的能力。

    知識圖譜可用于反欺詐、不一致性驗證、組團(tuán)欺詐等公共安全保障領(lǐng)域,需要用到異常分析、靜態(tài)分析、動態(tài)分析等數(shù)據(jù)挖掘方法。特別地,知識圖譜在搜索引擎、可視化展示和精準(zhǔn)營銷方面有很大的優(yōu)勢,已成為業(yè)界的熱門工具。但是,知識圖譜的發(fā)展還有很大的挑戰(zhàn),如數(shù)據(jù)的噪聲問題,即數(shù)據(jù)本身有錯誤或者數(shù)據(jù)存在冗余。隨著知識圖譜應(yīng)用的不斷深入,還有一系列關(guān)鍵技術(shù)需要突破。

    三、自然語言處理

    自然語言處理是計算機(jī)科學(xué)領(lǐng)域與人工智能領(lǐng)域中的一個重要方向,研究能實現(xiàn)人與計算機(jī)之間用自然語言進(jìn)行有效通信的各種理論和方法,涉及的領(lǐng)域較多,主要包括機(jī)器翻譯、機(jī)器閱讀理解和問答系統(tǒng)等。

    機(jī)器翻譯

    機(jī)器翻譯技術(shù)是指利用計算機(jī)技術(shù)實現(xiàn)從一種自然語言到另外一種自然語言的翻譯過程?;诮y(tǒng)計的機(jī)器翻譯方法突破了之前基于規(guī)則和實例翻譯方法的局限性,翻譯性能取得巨大提升?;谏疃壬窠?jīng)網(wǎng)絡(luò)的機(jī)器翻譯在日常口語等一些場景的成功應(yīng)用已經(jīng)顯現(xiàn)出了巨大的潛力。隨著上下文的語境表征和知識邏輯推理能力的發(fā)展,自然語言知識圖譜不斷擴(kuò)充,機(jī)器翻譯將會在多輪對話翻譯及篇章翻譯等領(lǐng)域取得更大進(jìn)展。

    語義理解

    語義理解技術(shù)是指利用計算機(jī)技術(shù)實現(xiàn)對文本篇章的理解,并且回答與篇章相關(guān)問題的過程。語義理解更注重于對上下文的理解以及對答案精準(zhǔn)程度的把控。隨著MCTest數(shù)據(jù)集的發(fā)布,語義理解受到更多關(guān)注,取得了快速發(fā)展,相關(guān)數(shù)據(jù)集和對應(yīng)的神經(jīng)網(wǎng)絡(luò)模型層出不窮。語義理解技術(shù)將在智能客服、產(chǎn)品自動問答等相關(guān)領(lǐng)域發(fā)揮重要作用,進(jìn)一步提高問答與對話系統(tǒng)的精度。

    問答系統(tǒng)

    問答系統(tǒng)分為開放領(lǐng)域的對話系統(tǒng)和特定領(lǐng)域的問答系統(tǒng)。問答系統(tǒng)技術(shù)是指讓計算機(jī)像人類一樣用自然語言與人交流的技術(shù)。人們可以向問答系統(tǒng)提交用自然語言表達(dá)的問題,系統(tǒng)會返回關(guān)聯(lián)性較高的答案。盡管問答系統(tǒng)目前已經(jīng)有了不少應(yīng)用產(chǎn)品出現(xiàn),但大多是在實際信息服務(wù)系統(tǒng)和智能手機(jī)助手等領(lǐng)域中的應(yīng)用,在問答系統(tǒng)魯棒性方面仍然存在著問題和挑戰(zhàn)。

    自然語言處理面臨四大挑戰(zhàn):

    一是在詞法、句法、語義、語用和語音等不同層面存在不確定性;

    二是新的詞匯、術(shù)語、語義和語法導(dǎo)致未知語言現(xiàn)象的不可預(yù)測性;

    三是數(shù)據(jù)資源的不充分使其難以覆蓋復(fù)雜的語言現(xiàn)象;

    四是語義知識的模糊性和錯綜復(fù)雜的關(guān)聯(lián)性難以用簡單的數(shù)學(xué)模型描述,語義計算需要參數(shù)龐大的非線性計算

    四、人機(jī)交互

    人機(jī)交互主要研究人和計算機(jī)之間的信息交換,主要包括人到計算機(jī)和計算機(jī)到人的兩部分信息交換,是人工智能領(lǐng)域的重要的外圍技術(shù)。人機(jī)交互是與認(rèn)知心理學(xué)、人機(jī)工程學(xué)、多媒體技術(shù)、虛擬現(xiàn)實技術(shù)等密切相關(guān)的綜合學(xué)科。傳統(tǒng)的人與計算機(jī)之間的信息交換主要依靠交互設(shè)備進(jìn)行,主要包括鍵盤、鼠標(biāo)、操縱桿、數(shù)據(jù)服裝、眼動跟蹤器、位置跟蹤器、數(shù)據(jù)手套、壓力筆等輸入設(shè)備,以及打印機(jī)、繪圖儀、顯示器、頭盔式顯示器、音箱等輸出設(shè)備。人機(jī)交互技術(shù)除了傳統(tǒng)的基本交互和圖形交互外,還包括語音交互、情感交互、體感交互及腦機(jī)交互等技術(shù)。

    五、計算機(jī)視覺

    計算機(jī)視覺是使用計算機(jī)模仿人類視覺系統(tǒng)的科學(xué),讓計算機(jī)擁有類似人類提取、處理、理解和分析圖像以及圖像序列的能力。自動駕駛、機(jī)器人、智能醫(yī)療等領(lǐng)域均需要通過計算機(jī)視覺技術(shù)從視覺信號中提取并處理信息。近來隨著深度學(xué)習(xí)的發(fā)展,預(yù)處理、特征提取與算法處理漸漸融合,形成端到端的人工智能算法技術(shù)。根據(jù)解決的問題,計算機(jī)視覺可分為計算成像學(xué)、圖像理解、三維視覺、動態(tài)視覺和視頻編解碼五大類。

    目前,計算機(jī)視覺技術(shù)發(fā)展迅速,已具備初步的產(chǎn)業(yè)規(guī)模。未來計算機(jī)視覺技術(shù)的發(fā)展主要面臨以下挑戰(zhàn):

    一是如何在不同的應(yīng)用領(lǐng)域和其他技術(shù)更好的結(jié)合,計算機(jī)視覺在解決某些問題時可以廣泛利用大數(shù)據(jù),已經(jīng)逐漸成熟并且可以超過人類,而在某些問題上卻無法達(dá)到很高的精度;

    二是如何降低計算機(jī)視覺算法的開發(fā)時間和人力成本,目前計算機(jī)視覺算法需要大量的數(shù)據(jù)與人工標(biāo)注,需要較長的研發(fā)周期以達(dá)到應(yīng)用領(lǐng)域所要求的精度與耗時;

    三是如何加快新型算法的設(shè)計開發(fā),隨著新的成像硬件與人工智能芯片的出現(xiàn),針對不同芯片與數(shù)據(jù)采集設(shè)備的計算機(jī)視覺算法的設(shè)計與開發(fā)也是挑戰(zhàn)之一。

    六、生物特征識別

    生物特征識別技術(shù)是指通過個體生理特征或行為特征對個體身份進(jìn)行識別認(rèn)證的技術(shù)。從應(yīng)用流程看,生物特征識別通常分為注冊和識別兩個階段。注冊階段通過傳感器對人體的生物表征信息進(jìn)行采集,如利用圖像傳感器對指紋和人臉等光學(xué)信息、麥克風(fēng)對說話聲等聲學(xué)信息進(jìn)行采集,利用數(shù)據(jù)預(yù)處理以及特征提取技術(shù)對采集的數(shù)據(jù)進(jìn)行處理,得到相應(yīng)的特征進(jìn)行存儲。

    識別過程采用與注冊過程一致的信息采集方式對待識別人進(jìn)行信息采集、數(shù)據(jù)預(yù)處理和特征提取,然后將提取的特征與存儲的特征進(jìn)行比對分析,完成識別。從應(yīng)用任務(wù)看,生物特征識別一般分為辨認(rèn)與確認(rèn)兩種任務(wù),辨認(rèn)是指從存儲庫中確定待識別人身份的過程,是一對多的問題;確認(rèn)是指將待識別人信息與存儲庫中特定單人信息進(jìn)行比對,確定身份的過程,是一對一的問題。

    生物特征識別技術(shù)涉及的內(nèi)容十分廣泛,包括指紋、掌紋、人臉、虹膜、指靜脈、聲紋、步態(tài)等多種生物特征,其識別過程涉及到圖像處理、計算機(jī)視覺、語音識別、機(jī)器學(xué)習(xí)等多項技術(shù)。目前生物特征識別作為重要的智能化身份認(rèn)證技術(shù),在金融、公共安全、教育、交通等領(lǐng)域得到廣泛的應(yīng)用。

    七、VR/AR

    虛擬現(xiàn)實(VR)/增強(qiáng)現(xiàn)實(AR)是以計算機(jī)為核心的新型視聽技術(shù)。結(jié)合相關(guān)科學(xué)技術(shù),在一定范圍內(nèi)生成與真實環(huán)境在視覺、聽覺、觸感等方面高度近似的數(shù)字化環(huán)境。用戶借助必要的裝備與數(shù)字化環(huán)境中的對象進(jìn)行交互,相互影響,獲得近似真實環(huán)境的感受和體驗,通過顯示設(shè)備、跟蹤定位設(shè)備、觸力覺交互設(shè)備、數(shù)據(jù)獲取設(shè)備、專用芯片等實現(xiàn)。

    虛擬現(xiàn)實/增強(qiáng)現(xiàn)實從技術(shù)特征角度,按照不同處理階段,可以分為獲取與建模技術(shù)、分析與利用技術(shù)、交換與分發(fā)技術(shù)、展示與交互技術(shù)以及技術(shù)標(biāo)準(zhǔn)與評價體系五個方面。獲取與建模技術(shù)研究如何把物理世界或者人類的創(chuàng)意進(jìn)行數(shù)字化和模型化,難點是三維物理世界的數(shù)字化和模型化技術(shù);分析與利用技術(shù)重點研究對數(shù)字內(nèi)容進(jìn)行分析、理解、搜索和知識化方法,其難點是在于內(nèi)容的語義表示和分析;交換與分發(fā)技術(shù)主要強(qiáng)調(diào)各種網(wǎng)絡(luò)環(huán)境下大規(guī)模的數(shù)字化內(nèi)容流通、轉(zhuǎn)換、集成和面向不同終端用戶的個性化服務(wù)等,其核心是開放的內(nèi)容交換和版權(quán)管理技術(shù);展示與交換技術(shù)重點研究符合人類習(xí)慣數(shù)字內(nèi)容的各種顯示技術(shù)及交互方法,以期提高人對復(fù)雜信息的認(rèn)知能力,其難點在于建立自然和諧的人機(jī)交互環(huán)境;標(biāo)準(zhǔn)與評價體系重點研究虛擬現(xiàn)實/增強(qiáng)現(xiàn)實基礎(chǔ)資源、內(nèi)容編目、信源編碼等的規(guī)范標(biāo)準(zhǔn)以及相應(yīng)的評估技術(shù)。

    目前虛擬現(xiàn)實/增強(qiáng)現(xiàn)實面臨的挑戰(zhàn)主要體現(xiàn)在智能獲取、普適設(shè)備、自由交互和感知融合四個方面。在硬件平臺與裝置、核心芯片與器件、軟件平臺與工具、相關(guān)標(biāo)準(zhǔn)與規(guī)范等方面存在一系列科學(xué)技術(shù)問題??傮w來說虛擬現(xiàn)實/增強(qiáng)現(xiàn)實呈現(xiàn)虛擬現(xiàn)實系統(tǒng)智能化、虛實環(huán)境對象無縫融合、自然交互全方位與舒適化的發(fā)展趨勢

    三、人工智能技術(shù)是學(xué)什么?

    1、人工智能是計算機(jī)科學(xué)的一個分支,它企圖了解智能的實質(zhì),并生產(chǎn)出一種新的能以人類智能相似的方式做出反應(yīng)的智能機(jī)器,該領(lǐng)域的研究包括機(jī)器人、語言識別、圖像識別、自然語言處理和專家系統(tǒng)等。人工智能從誕生以來,理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴(kuò)大,可以設(shè)想,未來人工智能帶來的 科技 產(chǎn)品,將會是人類智慧的“容器”。人工智能可以對人的意識、思維的信息過程的模擬。人工智能不是人的智能,但能像人那樣思考、也可能超過人的智能。

    2、人工智能是一門極富挑戰(zhàn)性的科學(xué),從事這項工作的人必須懂得計算機(jī)知識,心理學(xué)和哲學(xué)。人工智能是包括十分廣泛的科學(xué),它由不同的領(lǐng)域組成,如機(jī)器學(xué)習(xí),計算機(jī)視覺等等,總的說來,人工智能研究的一個主要目標(biāo)是使機(jī)器能夠勝任一些通常需要人類智能才能完成的復(fù)雜工作。

    那么,人工智能學(xué)什么內(nèi)容呢?

    目前人工智能專業(yè)的學(xué)習(xí)內(nèi)容主要包括: 機(jī)器學(xué)習(xí)、人工智能導(dǎo)論(搜索法等)、圖像識別、生物演化論、自然語言處理、語義網(wǎng)、博弈論等。

    需要的基礎(chǔ)課程主要有,信號處理,線性代數(shù),微積分,還有編程(有數(shù)據(jù)結(jié)構(gòu)基礎(chǔ))。

    從專業(yè)的角度來說,機(jī)器學(xué)習(xí)、圖像識別、自然語言處理,這其中任何一個都是一個大的方向,只要精通其中一個方向,就已經(jīng)很厲害了。所以不要看內(nèi)容很多,有些你只是需要掌握,你需要選擇的是一個方向深入研究。其實嚴(yán)格來說,人工智能不算難學(xué),但是也不是輕輕松松就能學(xué)會的,需要有一定的數(shù)學(xué)相關(guān)的基礎(chǔ),同時還有一段時間的積淀。

    想必大家也都知道,現(xiàn)在是一個逐漸智能化的 社會 ,隨著 科技 的不斷進(jìn)步,越來越多的智能化產(chǎn)品開始進(jìn)入到人們的生活中。而近些年,相信大家經(jīng)常會聽到人工智能四個字,人工智能這個行業(yè)比較吸引人,同時薪資待遇也較好。因此,很多的大學(xué)畢業(yè)生畢業(yè)之后都想要進(jìn)入這個行業(yè),但進(jìn)入這個行業(yè)并不容易,如果是零基礎(chǔ)的話更是需要學(xué)習(xí)很多東西才行。那么人工智能入門需要我們學(xué)習(xí)什么呢?

    需要我們了解的一點是人工智能是一個綜合學(xué)科,其本身涉及很多方面,比如神經(jīng)網(wǎng)絡(luò)、機(jī)器識別、機(jī)器視覺、機(jī)器人等,因此,我們想要學(xué)好整個人工智能是很不容易的。

    首先我們需要一定的數(shù)學(xué)基礎(chǔ),如:高數(shù)、線性代數(shù)、概率論、統(tǒng)計學(xué)等等。很多人可能要問,我學(xué)習(xí)人工智能為什么要有數(shù)學(xué)基礎(chǔ)呢?二者看似毫不相干,實則不然。線性代數(shù)能讓我們了解如何將研究對象形象化,概率論能讓我們懂得如何描述統(tǒng)計規(guī)律,此外還有許多其他數(shù)學(xué)科目,這些數(shù)學(xué)基礎(chǔ)能讓我們在學(xué)習(xí)人工智能的時候事半功倍。

    然后我們需要的就是對算法的累積,比如人工神經(jīng)網(wǎng)絡(luò)、遺傳算法等。人工智能的本身還是通過算法對生活中的事物進(jìn)行計算模擬,最后做出相應(yīng)操作的一種智能化工具,算法在其中扮演的角色非常重要,可以說是不可或缺的一部分。

    最后需要掌握和學(xué)習(xí)的就是編程語言,畢竟算法的實現(xiàn)還是需要編程的,推薦學(xué)習(xí)的有Java以及Python。如果以后想往大數(shù)據(jù)方向發(fā)展,就學(xué)習(xí)Java,而Python可以說是學(xué)習(xí)人工智能所必須要掌握的一門編程語言。當(dāng)然,只掌握一門編程語言是不夠的,因為大多數(shù)機(jī)器人的仿真都是采用的混合編程模式,即采用多種編程軟件及語言組合使用,在人工智能方面一般使用的較多的有匯編和C++,此外還有MATLAB、VC++等,總之一句話,編程是必不可少的一項技能,需要我們花費大量時間和精力去掌握。

    人工智能現(xiàn)在發(fā)展得越來越快速,這得益于計算機(jī)科學(xué)的飛速發(fā)展??梢灶A(yù)料到,在未來,我們的生活中將隨處可見人工智能的產(chǎn)品,而這些產(chǎn)品能為我們的生活帶來很大的便利,而人工智能行業(yè)的未來發(fā)展前景也是十分光明的。所以,選擇人工智能行業(yè)不會錯,但正如文章開頭所說,想入行,需要我們下足功夫,全面掌握這個行業(yè)所需要的技能才行。

    1.數(shù)學(xué)基礎(chǔ):

    高等數(shù)學(xué),線性代數(shù),概率論數(shù)理統(tǒng)計和隨機(jī)過程,離散數(shù)學(xué),數(shù)值分析,博弈論;

    2.算法積累:

    神經(jīng)網(wǎng)絡(luò),支持向量機(jī),貝葉斯,決策樹,邏輯回歸,線性模型,聚類算法,遺傳算法,估計方法,特征工程等;

    3.編程語言:

    至少掌握一門編程語言,越精通越好,畢竟算法的實現(xiàn)還是要編程的;

    4.技術(shù)基礎(chǔ):

    計算機(jī)原理,操作系統(tǒng),程序設(shè)計語言,分布式系統(tǒng),算法基礎(chǔ);

    人工智能,即AI(ArtificialIntelligence),是一門包含計算機(jī)、控制論、信息論、神經(jīng)生理學(xué)、心理學(xué)、語言學(xué)等綜合學(xué)科。

    該概念第一次在達(dá)茅斯頓學(xué)術(shù)會議上提出:人工智能是從計算機(jī)應(yīng)用系統(tǒng)角度出發(fā),研究如何制造出人造的智能機(jī)器或智能系統(tǒng),來模擬人類智能活動的能力,以及延生人類智能科學(xué)。

    核心課程

    ArtificialIntelligence人工智能

    MachineLearning機(jī)器學(xué)習(xí)

    AdvancedOperatingSystems高級操作系統(tǒng)

    AdvancedAlgorithmDesign高級算法設(shè)計

    ComputationalComplexity計算復(fù)雜性

    MathematicalAnalysis數(shù)學(xué)分析

    AdvancedComputerGraphics高級計算機(jī)圖形

    AdvancedComputerNetworks高級計算機(jī)網(wǎng)絡(luò)

    就業(yè)方向參考

    (1)搜索方向:百度、谷歌、微軟、yahoo等(包括智能搜索、語音搜索、圖片搜索、視頻搜索等都是未來的方向)

    (2)醫(yī)學(xué)圖像處理:醫(yī)療設(shè)備、醫(yī)療器械很多都會涉及到圖像處理和成像,大型的公司有西門子、GE、飛利浦等。

    (3)計算機(jī)視覺和模式識別方向:前面說過的指紋識別、人臉識別、虹膜識別等;還有一個大的方向是車牌識別;目前鑒于視頻監(jiān)控是一個熱點問題,做跟蹤和識別也不錯;

    (4)還有一些圖像處理方面的人才需求的公司,如威盛、松下、索尼、三星等。

    另外,AI方向的人才都是高 科技 型的,在待遇方面自然相對比較豐厚,所以很這個方向很有發(fā)展前途。

    高等數(shù)學(xué),線性代數(shù),概率論數(shù)理統(tǒng)計和隨機(jī)過程,離散數(shù)學(xué),數(shù)值分析。數(shù)學(xué)基礎(chǔ)知識蘊(yùn)含著處理智能問題的基本思想與方法,也是理解復(fù)雜算法的必備要素。今天的種種人工智能技術(shù)歸根到底都建立在數(shù)學(xué)模型之上,要了解人工智能,首先要掌握必備的數(shù)學(xué)基礎(chǔ)知識。線性代數(shù)將研究對象形式化,概率論描述統(tǒng)計規(guī)律。

    需要算法的積累:

    人工神經(jīng)網(wǎng)絡(luò),支持向量機(jī),遺傳算法等等算法;當(dāng)然還有各個領(lǐng)域需要的算法,比如要讓機(jī)器人自己在位置環(huán)境導(dǎo)航和建圖就需要研究SLAM;總之算法很多需要時間的積累。

    需要掌握至少一門編程語言:

    比如C語言,MATLAB之類。畢竟算法的實現(xiàn)還是要編程的;如果深入到硬件的話,一些電類基礎(chǔ)課必不可少。

    學(xué)習(xí)人工智能,需要數(shù)學(xué)基礎(chǔ):高等數(shù)學(xué),線性代數(shù),概率論數(shù)理統(tǒng)計和隨機(jī)過程,離散數(shù)學(xué),數(shù)值分析。

    需要算法的積累:人工神經(jīng)網(wǎng)絡(luò),支持向量機(jī),遺傳算法等等算法;當(dāng)然還有各個領(lǐng)域需要的算法,比如要讓機(jī)器人自己在位置環(huán)境導(dǎo)航和建圖就需要研究SLAM;總之算法很多需要時間的積累。

    需要掌握至少一門編程語言:畢竟算法的實現(xiàn)還是要編程的;如果深入到硬件的話,一些電類基礎(chǔ)課必不可少。

    一、 Python基礎(chǔ)

    二、 數(shù)學(xué)基礎(chǔ),其中包含微積分基礎(chǔ)、線性代數(shù)以及概率統(tǒng)計

    三、 各種框架,如Tensorflow等

    四、 深度學(xué)習(xí),其中包含機(jī)器學(xué)習(xí)基礎(chǔ)、深度學(xué)習(xí)基礎(chǔ)、卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)、生成式對抗神經(jīng)網(wǎng)絡(luò)以及深度強(qiáng)化學(xué)習(xí)。

    五、 商業(yè)項目實戰(zhàn),如MTCNN+CENTER LOSS 人臉偵測和人臉識別、YOLO V2 多目標(biāo)多種類偵測、GLGAN 圖像缺失部分補(bǔ)齊以及語言喚醒等。

    熟練掌握C程序設(shè)計語言,以及C++、Java、Visual Basic中的一種程序設(shè)計語言

    從專業(yè)的角度來說,機(jī)器學(xué)習(xí)、圖像識別、自然語言處理,這其中任何一個都是一個大的方向,只要精通其中一個方向,就已經(jīng)很厲害了。所以不要看內(nèi)容很多,有些你只是需要掌握,你需要選擇的是一個方向深入研究。其實嚴(yán)格來說,人工智能不算難學(xué),但是也不是輕輕松松就能學(xué)會的,需要有一定的數(shù)學(xué)相關(guān)的基礎(chǔ),同時還有一段時間的積淀。

    感謝題主提出的問題,非常榮幸能夠做出回答。

    1.人工智能是計算機(jī)科學(xué)的一個分支,它試圖理解智能的本質(zhì),并產(chǎn)生一種新的智能機(jī)器,它能以類似人類智能的方式做出反應(yīng)。該領(lǐng)域的研究包括機(jī)器人、語言識別、圖像識別、自然語言處理和專家系統(tǒng)。自人工智能誕生以來,其理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域不斷擴(kuò)大。可以想象,人工智能帶來的 科技 產(chǎn)品將成為未來人類智能的“容器”。人工智能可以模擬人類意識和思維的信息過程。人工智能不是人類智能,但它可以像人類一樣思考,并可能超越人類智能。

    2.人工智能是一門具有挑戰(zhàn)性的科學(xué),從事這項工作的人必須了解計算機(jī)知識、心理學(xué)和哲學(xué)。人工智能是一門非常廣泛的科學(xué),它由不同的領(lǐng)域組成,如機(jī)器學(xué)習(xí)、計算機(jī)視覺等。一般來說,人工智能研究的主要目標(biāo)之一是使機(jī)器能夠勝任一些通常需要人類智能的復(fù)雜任務(wù)。

    那么,人工智能學(xué)到了什么?

    目前,人工智能專業(yè)的學(xué)習(xí)內(nèi)容主要包括:機(jī)器學(xué)習(xí)、人工智能導(dǎo)論(搜索方法等)。)、圖像識別、生物進(jìn)化理論、自然語言處理、語義網(wǎng)、博弈論等。

    所需的基礎(chǔ)課程主要是信號處理、線性代數(shù)、微積分和編程(有數(shù)據(jù)結(jié)構(gòu)基礎(chǔ))。

    從專業(yè)的角度來看,機(jī)器學(xué)習(xí)、圖像識別和自然語言處理都是大方向,只要你精通其中的一個,你就已經(jīng)非常強(qiáng)大了。所以不要看太多的內(nèi)容,有些你只需要掌握,你需要選擇一個方向來深入學(xué)習(xí)。事實上,嚴(yán)格來說,人工智能不難學(xué),但不容易學(xué)。它需要一定的數(shù)學(xué)基礎(chǔ)和一段時間的積累。

    四、常見的人工智能機(jī)器人類型有哪些

    小愛同學(xué),siri,成都方大智能電話機(jī)器人等,希望我的回答可以幫助到您, 謝謝

    以上就是關(guān)于人工智能的種類相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進(jìn)行咨詢,客服也會為您講解更多精彩的知識和內(nèi)容。


    推薦閱讀:

    和人工智能相關(guān)的關(guān)鍵詞(和人工智能相關(guān)的關(guān)鍵詞是什么)

    美國人工智能GPT(GPT)

    人工智能陪聊天app(陪人聊天的智能機(jī)器人)

    總?cè)滩蛔】匆粋€人的抖音(總?cè)滩蛔】匆粋€人的抖音視頻)

    怎么申請網(wǎng)絡(luò)作家協(xié)會(怎么申請網(wǎng)絡(luò)作家協(xié)會賬號)