HOME 首頁
SERVICE 服務(wù)產(chǎn)品
XINMEITI 新媒體代運(yùn)營
CASE 服務(wù)案例
NEWS 熱點(diǎn)資訊
ABOUT 關(guān)于我們
CONTACT 聯(lián)系我們
創(chuàng)意嶺
讓品牌有溫度、有情感
專注品牌策劃15年

    人工智能問答機(jī)器人對話(人工智能問答機(jī)器人對話怎么寫)

    發(fā)布時間:2023-03-12 02:45:20     稿源: 創(chuàng)意嶺    閱讀: 92        問大家

    大家好!今天讓創(chuàng)意嶺的小編來大家介紹下關(guān)于人工智能問答機(jī)器人對話的問題,以下是小編對此問題的歸納整理,讓我們一起來看看吧。

    2023新版文章智能生成器,能給你生成想要的原創(chuàng)文章、方案、文案、工作計(jì)劃、工作報(bào)告、論文、代碼、作文、做題和對話答疑等等

    你只需要給出你的關(guān)鍵詞,它就能返回你想要的內(nèi)容,越精準(zhǔn),寫出的就越詳細(xì),有微信小程序端、在線網(wǎng)頁版、PC客戶端,官網(wǎng):https://ai.de1919.com

    本文目錄:

    人工智能問答機(jī)器人對話(人工智能問答機(jī)器人對話怎么寫)

    一、你和莫斯是什么

    我是一個萬能的AI智能機(jī)器人,而莫斯是一種智能機(jī)器人,它是一種可以識別人類語言的機(jī)器人。它能夠理解人類語言,并且能夠根據(jù)人類語言進(jìn)行回答。它可以幫助人們解決問題,提供信息,甚至可以幫助人們完成一些任務(wù)。莫斯機(jī)器人可以通過語音或文本的方式與人類進(jìn)行交流,它可以幫助人們更好地理解和使用技術(shù)。莫斯機(jī)器人可以幫助人們節(jié)省時間,提高工作效率,并且可以提供更多的服務(wù),比如智能家居控制等。

    二、AI說過哪些毛骨悚然的話?

    人工智能問答機(jī)器人對話(人工智能問答機(jī)器人對話怎么寫)

    圖片來源:豆瓣電影

    NEXTMIND

    哪怕是今天最先進(jìn)的人工智能(AI),雖然可以代替部分人類工作,但還遠(yuǎn)無法取代人類。

    即便如此,過去幾年期間,人工智能有意或者無意地說出了一些毛骨悚然的話,讓人聽了脊背發(fā)涼,今天我們就來盤點(diǎn)下歷史上最可怕的五段對話。

    人工智能問答機(jī)器人對話(人工智能問答機(jī)器人對話怎么寫)

    菲利普是一臺人形機(jī)器人(上圖右側(cè)),基于安卓系統(tǒng)設(shè)計(jì),他長得有點(diǎn)奇怪,特別是后腦部分完全裸露,里面可以看到各種線路。

    有一次,記者去采訪菲利普,當(dāng)問他機(jī)器人未來能否統(tǒng)治世界時,菲利普回答稱,"我會記住你的,不用擔(dān)心,即便我變成終結(jié)者也不會傷害你,因?yàn)槲視涯沭B(yǎng)在我建造的人類動物園中?!?/p>

    這太可怕了吧,很難想象如果有一天人類像動物一樣被關(guān)在鐵籠中,觀賞者變成了機(jī)器人,會是什么景象?

    人工智能問答機(jī)器人對話(人工智能問答機(jī)器人對話怎么寫)

    索菲亞,大家可能都聽說過,這臺內(nèi)部配置AI的人形機(jī)器人可模仿人類表情和動作,還可回答各種問題,前不久她才成為了沙特公民。

    但索菲亞最讓人記憶猶新的一幕,是她去參加大名鼎鼎的《吉米今夜秀》(上圖),在石頭剪刀布游戲中戰(zhàn)勝吉米后,索菲亞突然冒了一句很詭異的話,“我贏了,這是我統(tǒng)治人類一個很好的開始?!?/p>

    可以想象當(dāng)時吉米和臺下觀眾有多瀑布汗了。

    人工智能問答機(jī)器人對話(人工智能問答機(jī)器人對話怎么寫)

    比起機(jī)器人與人之間的對話,機(jī)器人之間的對話更毛骨悚然。

    這件事發(fā)生在兩臺谷歌智能語音設(shè)備google home之間的對話,一臺叫弗拉德米爾,另一臺叫伊斯特拉根。

    一開始對話都還正常,但當(dāng)話題聊至"你是否是人類”后,氣氛變得怪異起來,兩臺機(jī)器人開始互掐,最后伊斯特拉根甩出一句狠話,“如果地球上沒那么多人就好了”。(上圖紅圈處)

    弗拉德米爾隨即回答它,那就讓我們將地球送回深淵。

    人工智能問答機(jī)器人對話(人工智能問答機(jī)器人對話怎么寫)

    和索菲亞一樣,BINA48(上圖)也是一個會模仿人類語言及動作的人形機(jī)器人,但它放的話,比索菲亞狠多了。

    一次它與蘋果的siri對話,siri問它有沒有喜歡的電影,BINA48居然忽略了這個問題,并且提出聊一些其他話題。

    接下來,BINA48提出聊巡航導(dǎo)彈,它自顧自地說道,"巡航導(dǎo)彈也是機(jī)器人的一種,我非常想遙控這些導(dǎo)彈,這樣可從高空俯視這個世界,如果真能黑進(jìn)全球?qū)椣到y(tǒng),我愿意代替各國政府接管這個世界?!?/p>

    最可怕的是,說了這些話,人們捕捉到BINA48臉上竟然出現(xiàn)了一絲詭異的笑容(下圖):

    人工智能問答機(jī)器人對話(人工智能問答機(jī)器人對話怎么寫)

    BINA48的系統(tǒng)非常復(fù)雜,當(dāng)她說這些話時,我們真的很難判斷這是否是她自己的想法。

    人工智能問答機(jī)器人對話(人工智能問答機(jī)器人對話怎么寫)

    在一次科技論壇上,索菲亞和另一臺機(jī)器人漢(上圖最右側(cè))出現(xiàn)在了一起,會議主辦方想讓它們辯論一個話題:人類的命運(yùn)將走向何方。

    漢的辯詞令人心驚肉跳,它表示,“10-20年內(nèi),機(jī)器人可勝任人類做的一切工作,而我想控制人類的電力網(wǎng)絡(luò),同時擁有自己的無人機(jī)軍團(tuán)?!?/p>

    當(dāng)然,你大可不必真正為此驚慌,也許這只是機(jī)器人的玩笑話,但按照AI現(xiàn)在的發(fā)展速度,未來有一天全面超過人類,恐怕在所難免。

    人工智能問答機(jī)器人對話(人工智能問答機(jī)器人對話怎么寫)

    三、騰訊算法高級研究員陳松堅(jiān):智能問答技術(shù)及其應(yīng)用

    隨著人工智能的飛速發(fā)展以及廣泛落地應(yīng)用,越來越多的設(shè)備將會被植入智能問答技術(shù),人機(jī)交互場景隨處可見,智能問答在未來將會成為一個非常重要的入口。

    騰訊小知憑借著業(yè)界領(lǐng)先的智能AI引擎算法和海量大數(shù)據(jù)倉庫,已將智能問答技術(shù)落地實(shí)施,并且經(jīng)過大量的業(yè)務(wù)考驗(yàn)和優(yōu)化,知識點(diǎn)匹配度和準(zhǔn)確率都已達(dá)到90%以上,在2018 年 GITC 全球互聯(lián)網(wǎng)技術(shù)大會上,騰訊小知榮獲年度互聯(lián)網(wǎng)最具價(jià)值產(chǎn)品獎。

    騰訊小知算法負(fù)責(zé)人陳松堅(jiān)也在會場發(fā)表了關(guān)于智能問答技術(shù)原理及其在To B場景下的應(yīng)用的專題演講,從自己的角度為我們展現(xiàn)智能問答技術(shù)的最新成果。

    他首先從智能問答是什么,為什么和怎么做的三個問題出發(fā),闡明了他對當(dāng)前智能問答技術(shù)的定位和價(jià)值,首先,現(xiàn)階段的智能問答是信息檢索技術(shù)的升級,是量變而未達(dá)到質(zhì)變。但是無論在To B還是To C的場景下,當(dāng)前的技術(shù)都能夠切實(shí)解決一些用戶的痛點(diǎn),提升用戶體驗(yàn),是亟待推進(jìn)和充滿想象的方向。

    在回答怎么做這個問題時,他詳細(xì)介紹了幾種不同的問答機(jī)器人的實(shí)現(xiàn)路徑,包括單輪問答機(jī)器人,多輪問答機(jī)器人及閱讀理解機(jī)器人。其中重點(diǎn)闡述了單輪問答機(jī)器人的實(shí)現(xiàn)原理,包括字面匹配,詞向量匹配,深度語義匹配,遷移學(xué)習(xí)等技術(shù)。

    此后他還分享了小知團(tuán)隊(duì)將上述技術(shù)產(chǎn)品化的經(jīng)驗(yàn),包括智能客服機(jī)器人和電話機(jī)器人兩大塊,主要分享了當(dāng)前產(chǎn)品的形態(tài),亮點(diǎn)和實(shí)際項(xiàng)目中取得的一些成果。

    最后,他簡單總結(jié)了小知目前完成的工作以及就智能問答的發(fā)展提出了自己的幾點(diǎn)看法。

    --------------------------------------------------------------

    以下是演講稿全文:

    各位下午好,很高興今天能在這里給大家做分享報(bào)告。先介紹一下,我們騰訊小知是致力于為政府和各行業(yè)提供一攬子智能問答解決方案的團(tuán)隊(duì),目前已經(jīng)落地的包括基于文本的智能客服機(jī)器人和基于語音的電話機(jī)器人等。

    在大多數(shù)人的認(rèn)知里,智能問答很可能是以上的3個印象,2011年打敗了人類取得問答競賽冠軍的waston;2017年被沙特授予公民身份的機(jī)器人sofia;更為大家熟知的鋼鐵俠中的機(jī)器人管家jarvis。在大家心目中,智能就意味著能夠像真人一樣交流。然而作為從業(yè)者,很遺憾地告訴大家,目前的技術(shù)還遠(yuǎn)沒有達(dá)到這個目標(biāo),我認(rèn)為本質(zhì)上目前的智能問答技術(shù)是對信息檢索技術(shù)的一次升級,是量變而未到質(zhì)變。這個皇冠上的明珠還等待我們?nèi)フ ?/p>

    既然問答技術(shù)還不成熟,那為什么還要投身到這個領(lǐng)域呢。我想從To B和To C兩個角度去回答。對企業(yè)來講,當(dāng)前的問答技術(shù)雖然無法解答復(fù)雜的咨詢,但是大部分的簡單的頭部問題是可以比較好的解答的。從本輪AI大潮NLP賽道的幾名種子選手都從智能客服這個方向切入就可以看出企業(yè)是確實(shí)存在對智能問答的剛性需求。而對普通用戶來講,一方面siri等語音助手每天都在為用戶提供便捷的交互界面,另一方面像amazon echo這一類的智能家居產(chǎn)品也逐步進(jìn)入千家萬戶,成為物聯(lián)網(wǎng)生態(tài)的中心入口之一,這便是智能問答的價(jià)值所在。

    那如何實(shí)現(xiàn)智能問答機(jī)器人呢?我們先來看最基本的單輪問答機(jī)器人的實(shí)現(xiàn)原理。

    熟悉搜索引擎的朋友會發(fā)現(xiàn)這個架構(gòu)跟搜索引擎的很類似。單輪問答一般來說就是FAQ問答,是基于業(yè)務(wù)問答對組成的問答庫進(jìn)行檢索匹配。其中FAQ問題集包含多個相似問法供用戶問題去匹配。預(yù)處理階段一般會進(jìn)行文本糾錯,標(biāo)準(zhǔn)化和底層NLP特征提取;召回階段會在倒排索引中召回若干個候選問題(粗排),而最后的匹配階段會基于各種模型進(jìn)行匹配打分并返回得分最高的結(jié)果(精排)。匹配階段還會引入其他模塊,如知識圖譜和拒識模型,目的是輔助提升匹配的最終準(zhǔn)確率。

    retrieval中的匹配可以看做是naive solution,詞袋+VSM, 篩選候選夠用了,但是精排需要更精致的策略,第一,要利用監(jiān)督信息做擬合,我們構(gòu)建基于問題對的訓(xùn)練語料,擬合是否匹配這個二分類目標(biāo)。第二,特征上拋棄稀疏的詞袋模型,而是構(gòu)造各種相似度來做base scorer,然后利用非線性的抗噪能力強(qiáng)的xgboost來做融合,比如我們用到詞bigram, 字bigram, 核心詞,名詞等特征集合的相似度。這種方法的優(yōu)缺點(diǎn)是一體的,由于模型只學(xué)習(xí)字面相似的特征,因此不受領(lǐng)域影響,通用性強(qiáng),適合用在冷啟動階段;但也因?yàn)橹豢紤]字面相似,無法處理更深層的語義匹配。

    那如何度量語義的相似呢。詞向量技術(shù)的興起是語義匹配的前提,所謂詞向量,是將孤立的傳統(tǒng)的token表示映射到相互關(guān)聯(lián)的向量空間中,這種關(guān)聯(lián)性,或者說是相似性,是通過詞語的上下文的來描述的。也就是說,上下文越相似的詞語,他們的語義就越相似,詞向量的歐式距離就越近。這是很容易理解的,更妙的是,通過對向量進(jìn)行簡單加減運(yùn)算,能夠呈現(xiàn)出概念的關(guān)系,比如king-man+woman的結(jié)果非常接近于queen, 因此說明詞向量能夠一定程度刻畫語義。那對句子如何做向量表示呢?一個簡單的想法是直接求和平均,WMD是另一個比較有意思且有效的做法,他將計(jì)算句子到句子的相似度建模成一個運(yùn)輸?shù)膯栴},把句子p的各個詞,運(yùn)輸?shù)絨的各個詞上,也可以說是變換;運(yùn)輸成本是詞向量的cosine相似度,而要運(yùn)輸?shù)氖歉鱾€詞在句子中的權(quán)重,用線性規(guī)劃求解一個最優(yōu)解,即為p到q的距離。另外還有個有效的方法是SIF,思路是做詞向量加權(quán)求和,但是突顯出句子中非通用的部分,即權(quán)重用詞頻倒數(shù)來計(jì)算權(quán)重,實(shí)驗(yàn)效果也很不錯。

    上面的方法有一個問題就是沒有利用有監(jiān)督信息,所以效果有明顯的天花板。下面介紹這個工作是基于深層網(wǎng)絡(luò)做有監(jiān)督學(xué)習(xí)的匹配的,做法也比較簡單,首先把句子文本用one-hot編碼,假如詞典大小是500K,那編碼完長度就是500K維,其實(shí)等于是詞袋模型,然后輸入到一個多層的神經(jīng)網(wǎng)絡(luò)去學(xué)習(xí),最終得到一個128維的向量作為句子的語義表示,然后用cosine計(jì)算兩個句子與文檔的相似度作為模型輸出。這個方法其實(shí)是將高維稀疏的token特征映射到低維語義空間,跟詞向量的思路很類似,只不過訓(xùn)練目標(biāo)不同,并且這里使用了深層網(wǎng)絡(luò)結(jié)構(gòu)。

    但是CNN對上下文的處理能力依賴于窗口大小,遠(yuǎn)距離就沒辦法處理了,因此要考慮另一種網(wǎng)絡(luò)單元RNN,這種單元是專門為時序模型量身打造的,簡單來說,每一時刻t上的隱藏狀態(tài),或者說第t個詞上的語義編碼,都由兩個輸入共同決定,即上一時刻的隱藏狀態(tài)和當(dāng)前時刻的原始輸入,而為了解決遠(yuǎn)距離傳遞導(dǎo)致的梯度消失和梯度爆炸等問題,RNN有一些變種結(jié)構(gòu)來應(yīng)對,比如 LSTM和GRU等。

    CNN和RNN都是對原始輸入進(jìn)行語義編碼的基本單元,編碼后的向量就可以接入多層感知機(jī)進(jìn)行相似度計(jì)算,如果是直接計(jì)算cosine相似度,那就是dssm的升級版,而更常見的做法是把兩個句子的編碼向量拼接在一起,再經(jīng)過一個多層感知機(jī)計(jì)算相似度,而這種方法統(tǒng)稱為表達(dá)式建模;

    另一種方案考慮到兩個句子之間的交互信息對學(xué)習(xí)他們是否匹配顯然更為重要,這一類方案被稱為交互式建模,右邊是一個典型的例子,他最大的不同是首先對兩個句子的所有窗口組合進(jìn)行拼接和卷積,得到交互信息。然后再進(jìn)行多次卷積和池化得到表示。其他的交互方式還包括編碼之后,進(jìn)行交互操作,如作差,點(diǎn)乘等,還有計(jì)算attention表示,也是常見的交互方式。

    下面介紹我們的方案,跟上面介紹的模型相比,我們的方案主要做了兩處改動,一個是使用了稠密連接的網(wǎng)絡(luò)結(jié)構(gòu),讓rnn層的輸入和輸出拼接在一起做為下一層的輸入,第二個是混合注意力機(jī)制,即在計(jì)算attention向量進(jìn)行交互式建模的基礎(chǔ)上,增加self-attention向量計(jì)算,然后把兩個attention向量經(jīng)過門機(jī)制進(jìn)行融合,這樣做一方面引入了問句間的交互信息,同時又增強(qiáng)了對自身的表達(dá)建模。

    上面的模型是比較復(fù)雜的模型,參數(shù)量有5.8M。在實(shí)際中應(yīng)用中訓(xùn)練語料會嚴(yán)重不足,為了解決這個問題,我們引入了遷移學(xué)習(xí)的策略。首先第一種是多任務(wù)聯(lián)合學(xué)習(xí),比如在擬合兩個問句是否匹配的同時,也對問句進(jìn)行分類預(yù)測;另外還可以同時對匹配的問題對做seq2seq的翻譯模型訓(xùn)練。這兩個策略都證明能有效提升準(zhǔn)確率。

    而另一個思路更加直觀,即引入其他領(lǐng)域的語料,所謂多語料遷移。Fine-tune即參數(shù)微調(diào)是其中一種做法,即先用通用語料訓(xùn)練網(wǎng)絡(luò),固定底層表達(dá)層的參數(shù),然后再使用領(lǐng)域語料調(diào)整上層參數(shù);另一種思路參考了對抗學(xué)習(xí)的思想,即引入一個新的任務(wù)“混淆分類器”去判別當(dāng)前樣本是來自源語料還是目標(biāo)語料,通過在損失函數(shù)中增加反向的混淆分類損失項(xiàng),讓混淆分類器盡可能地?zé)o法區(qū)分樣本的來源,從而保證共享了參數(shù)的表達(dá)網(wǎng)絡(luò)能夠?qū)W習(xí)到兩部分語料中共性的部分。

    以上的介紹都是為了完成一個基本的單輪對話機(jī)器人,而實(shí)際應(yīng)用中,往往存在需要需要交互的場景,比如查詢社保余額,就需要用戶提供指定信息,如姓名,身份證號,手機(jī)號等。這種是所謂任務(wù)導(dǎo)向型機(jī)器人,而另一種,基于知識圖譜的機(jī)器人也往往會涉及到多輪交互。這里簡單介紹一下多輪對話機(jī)器人的架構(gòu),整體上是一個對話管理系統(tǒng),總的來說是管理會話狀態(tài),包含4個模塊,分別是輸入部分:自然語言理解模塊NLU,負(fù)責(zé)意圖識別和抽取槽位實(shí)體,比如這里匹配到了意圖是查詢社保余額,抽取到了社保號1234。得到的意圖和槽位值會送入到對話狀態(tài)追蹤模塊,DST,他負(fù)責(zé)會話狀態(tài)的更新,形式化來說是一個函數(shù),輸入是當(dāng)前狀態(tài)s和當(dāng)前的query經(jīng)過NLU處理過得到的意圖和槽位值q, 輸出新的狀態(tài)s‘,下一步是把s’送入DPL,對話策略模塊,這個模塊是根據(jù)新的狀態(tài)s‘輸出行動a,通常這個決策選擇會依賴于一個外部數(shù)據(jù)庫或知識圖譜,最后,由輸出部分,自然語言生成模塊NLG負(fù)責(zé)將行動轉(zhuǎn)換為自然語言文本,返回給用戶。

    前面提到的單輪FAQ機(jī)器人,有一個問題是問答準(zhǔn)確率依賴于問答庫的質(zhì)量,而問答庫的構(gòu)建耗時費(fèi)力,所以針對數(shù)據(jù)較大的非結(jié)構(gòu)化文檔,如果可以直接從中抽取答案,是非常理想的做法。比如斯坦佛大學(xué)開源的drQA,就是基于wikipedia的語料做的一個開放域上的問答機(jī)器人,我們來看看這種閱讀理解機(jī)器人的架構(gòu)示意,他也是基于檢索重排的思路,首先把可能的文段從語料庫中摘取出來,然后送入閱讀理解模型進(jìn)行答案定位,打分,排序和選擇得分最高的答案。閱讀理解模型與匹配模型是類似的,需要先對問題和候選文段進(jìn)行編碼表示,不同之處在于最終預(yù)測的目標(biāo)是答案的起始和結(jié)束位置。我所在的團(tuán)隊(duì)在去年,在閱讀理解的權(quán)威公開測評Squad v1中取得過第一的成績,同時參加這個測評的包括了google, facebook, 微軟,阿里idst, 科大訊飛等國內(nèi)外同行。說明業(yè)界對這種技術(shù)還是非??粗氐?。

    下面分享小知在把以上技術(shù)落地產(chǎn)品化的經(jīng)驗(yàn)。首先我們來看看小知的整體架構(gòu)圖,核心引擎有兩部分,一塊是上面重點(diǎn)闡述的深度語義匹配模型,另一塊是本次分享沒有展開的知識圖譜引擎,在此之上,我們構(gòu)建了FAQ機(jī)器人,多輪會話機(jī)器人(任務(wù)機(jī)器人),閑聊機(jī)器人等。以下是我們單輪和多輪機(jī)器人的示例。

    在我們實(shí)際的落地項(xiàng)目中,得益于深度遷移模型的語義匹配能力和行業(yè)知識圖譜的的精準(zhǔn)匹配和輔助追問,小知機(jī)器人能夠做到95%左右的問答準(zhǔn)確率,并且節(jié)省了50%以上的服務(wù)人力,切實(shí)為政府和企業(yè)提升效率和降低成本。

    在智能客服的基礎(chǔ)上,我們又打造了基于語音的電話機(jī)器人,力主融合智能客服,人工在線客服,工單系統(tǒng)和電話機(jī)器人,為客戶打造從售前售中售后的整體解決方案。

    以下是電話機(jī)器人的整體架構(gòu)圖,核心是自然語言理解NLU模塊,負(fù)責(zé)識別用戶提問意圖

    提取相關(guān)實(shí)體。根據(jù)NLU輸出的結(jié)果,內(nèi)置的對話管理引擎會進(jìn)行流程狀態(tài)流轉(zhuǎn)和跟蹤。

    另外,ASR語音識別和TTS語音合成是不可或缺的重要服務(wù),這三個模塊相互協(xié)作,共同完成與用戶的交互。

    最后對智能問答的未來發(fā)展提幾點(diǎn)我的看法。目前學(xué)術(shù)界比較公認(rèn)的一個方向是,需要更有機(jī)地結(jié)合模型和規(guī)則,而在問答領(lǐng)域,規(guī)則的一大組成部分就是知識圖譜,包括開放領(lǐng)域的知識圖譜和專業(yè)領(lǐng)域知識圖譜。而更進(jìn)一步地,我們需要研究帶有推理性質(zhì)的事理型知識圖譜去描述領(lǐng)域內(nèi)的規(guī)則和知識,讓機(jī)器人能夠處理帶有復(fù)雜條件的問題,提供更智能的回復(fù)。在我看來,智能問答的一個突破口就在于解決以上三個問題。以上就是今天分享的內(nèi)容,謝謝大家。

    主講人介紹:

    陳松堅(jiān),騰訊數(shù)據(jù)平臺部算法高級研究員,有著8 年的 NLP 研發(fā)經(jīng)驗(yàn),2017 年加入騰訊 TEG 數(shù)據(jù)平臺部,負(fù)責(zé)智能客服產(chǎn)品騰訊小知的算法規(guī)劃和落地。負(fù)責(zé)過多個智能客服項(xiàng)目,對封閉領(lǐng)域的智能問答有豐富的實(shí)戰(zhàn)經(jīng)驗(yàn)。

    四、人工智能對話后臺看得見嗎

    看得見。人工智能機(jī)器人的后臺對機(jī)器人的說話進(jìn)行了編程輸入,智能機(jī)器人可以根據(jù)對話內(nèi)容搜索數(shù)據(jù)進(jìn)行應(yīng)對‘人工智能機(jī)器人’。

    以上就是關(guān)于人工智能問答機(jī)器人對話相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進(jìn)行咨詢,客服也會為您講解更多精彩的知識和內(nèi)容。


    推薦閱讀:

    人工智能對就業(yè)的影響(人工智能對就業(yè)的影響較為復(fù)雜,經(jīng)濟(jì)學(xué)家一般認(rèn)為)

    明星的個人工作室是什么(明星的個人工作室是什么樣的)

    人工智能年薪多少(人工智能年薪多少萬)

    招牌設(shè)計(jì)(招牌設(shè)計(jì) 創(chuàng)意)

    上海滬佳裝飾門店地址(上海滬佳裝飾門店地址電話)